Abstract

Abstract The baroclinic annular mode (BAM) is the leading mode of variability in extratropical eddy activity characterized by its hemispheric-scale pulsing. Based on atmospheric reanalysis data for the Southern Hemisphere, this study reveals BAM-associated systematic modulations not only in fluxes associated with subweekly transient disturbances, as found by earlier studies, but also in their spatial structure involved in the dynamics of the BAM. Specifically, in the positive phase of the BAM characterized by enhanced activity of transient disturbances, their lower-tropospheric baroclinic structure becomes more distinct, and they tend to be more elongated meridionally in both the upper and lower troposphere. These BAM-associated structural modulations of the disturbances favor the more efficient baroclinic development via enhanced poleward heat transport and their downstream development, which can contribute to hemispheric-scale enhancement of kinetic energy associated with the disturbances. In addition, a tendency of the disturbances to exhibit horizontally tilting structure becomes more evident in the positive phase of the BAM, which is favorable for enhanced transport of westerly momentum from the subtropics to the midlatitude polar-front jet, or equivalently enhanced wave-activity propagation from the midlatitude storm track into the subtropics. This modulation lags the peak of anomalous kinetic energy of the disturbances, thus acting to contribute to the decay of the BAM signature. A set of numerical simulations suggests that the BAM-associated pulsing in storm-track activity and structural modulations are manifestations of atmospheric internal dynamics, which can be significantly amplified in the presence of a midlatitude oceanic frontal zone through the formation of more organized and coherent baroclinic wave packets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call