Abstract
This study reveals a significant in-phase relationship between the South China Sea summer monsoon (SCSSM) withdrawal date and tropical cyclone (TC) genesis over the western North Pacific (WNP). The number of TCs generated over the WNP from mid-September to mid-October is positively correlated with the SCSSM withdrawal date during the period of 1979–2016. The decreased (increased) number of TCs generated during early (late) SCSSM withdrawal years is attributed to both internal atmospheric dynamics and external sea surface temperature (SST) forcing. Through dynamic (Rossby wave response) and thermodynamic (increased moisture) processes, the warm SST anomalies during late withdrawal years over the tropical WNP contribute to maintaining the monsoon trough (MT) in the boreal autumn and moisturizing the mid-level atmosphere, providing a favorable environment for TC genesis. The remaining MT can facilitate the conversion of mean kinetic energy into eddy kinetic energy (EKE) and enhance synoptic-scale waves. In addition, upper-level baroclinic energy conversion also contributes to EKE development. Both barotropic and baroclinic processes favor TC genesis over the WNP. In contrast, colder SSTs during early withdrawal years induce the early withdrawal of the MT, leading to depressed enhancement of the EKE and weakening the northwestward propagation of synoptic-scale waves. Hence, fewer (more) TCs tend to be generated during early (late) withdrawal years.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.