Tabletop light field displays are compelling display technologies that offer stereoscopic vision and can present annular viewpoint distributions to multiple viewers around the display device. When employing the lens array to realize the of integral imaging tabletop light field display, there is a critical trade-off between the increase of the angular resolution and the spatial resolution. Moreover, as the viewers are around the device, the central viewing range of the reconstructed 3D images are wasteful. In this paper, we explore what we believe to be a new method for realizing tabletop flat-panel light field displays to improve the efficiency of the pixel utilization and the angular resolution of the tabletop 3D display. A 360-degree directional micro prism array is newly designed to refract the collimated light rays to different viewing positions and form viewpoints, then a uniform 360-degree annular viewpoint distribution can be accurately formed. In the experiment, a micro prism array sample is fabricated to verify the performance of the proposed tabletop flat-panel light field display system. One hundred viewpoints are uniformly distributed in the 360-degree viewing area, providing a full-color, smooth parallax 3D scene.