Abstract

Compared with conventional scattered backlight systems, integral imaging (InIm) display system with collimated backlight can reduce the voxel size, but apparent voxel separation and severe graininess still exist in reconstructed 3D images. In this paper, an InIm 3D display system with anisotropic backlight control of sub-pixels was proposed to resolve both voxel aliasing and voxel separation simultaneously. It consists of an anisotropic backlight unit (ABU), a transmissive liquid crystal panel (LCP), and a lens array. The ABU with specific horizontal and vertical divergence angles was proposed and designed. Within the depth of field, the light rays emitted from sub-pixels are controlled precisely by the ABU to minimize the voxel size as well as stitch adjacent voxels seamlessly, thus improving the 3D image quality effectively. In the experiment, the prototype of our proposed ABU-type InIm system was developed, and the spatial frequency was nearly two times of conventional scattered backlight InIm system. Additionally, the proposed system eliminated the voxel separation which usually occurs in collimated backlight InIm system. As a result, voxels reconstructed by our proposed system were stitched in space without aliasing and separation, thereby greatly enhancing the 3D resolution and image quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.