Abstract
We propose a high-quality, three-dimensional display system based on a simplified light field image acquisition method, and a custom-trained full-connected deep neural network is proposed. The ultimate goal of the proposed system is to acquire and reconstruct the light field images with possibly the most elevated quality from the real-world objects in a general environment. A simplified light field image acquisition method acquires the three-dimensional information of natural objects in a simple way, with high-resolution/high-quality like multicamera-based methods. We trained a full-connected deep neural network model to output desired viewpoints of the object with the same quality. The custom-trained instant neural graphics primitives model with hash encoding output the overall desired viewpoints of the object within the acquired viewing angle in the same quality, based on the input perspectives, according to the pixel density of a display device and lens array specifications within the significantly short processing time. Finally, the elemental image array was rendered through the pixel re-arrangement from the entire viewpoints to visualize the entire field-of-view and re-constructed as a high-quality three-dimensional visualization on the integral imaging display. The system was implemented successfully, and the displayed visualizations and corresponding evaluated results confirmed that the proposed system offers a simple and effective way to acquire light field images from real objects with high-resolution and present high-quality three-dimensional visualization on the integral imaging display system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.