The development of quantum-gas microscopes has brought novel ways of probing quantum degenerate many-body systems at the single-atom level. Until now, most of these setups have focused on alkali atoms. Expanding quantum-gas microscopy to alkaline-earth elements will provide new tools, such as SU(N)-symmetric fermionic isotopes or ultranarrow optical transitions, to the field of quantum simulation. Here we demonstrate the site-resolved imaging of a 84Sr bosonic quantum gas in a Hubbard-regime optical lattice. The quantum gas is confined by a two-dimensional in-plane lattice and a light-sheet potential, which operate at the strontium clock-magic wavelength of 813.4 nm. We realize fluorescence imaging using the broad 461-nm transition, which provides high spatial resolution. Simultaneously, we perform attractive Sisyphus cooling with the narrow 689-nm intercombination line. We reconstruct the atomic occupation from the fluorescence images, obtaining imaging fidelities above 94%. Finally, we realize a 84Sr superfluid in the Bose-Hubbard regime. We observe its interference pattern upon expansion, a probe of phase coherence, with single-atom resolution. Our strontium quantum-gas microscope provides a new platform to study dissipative Hubbard models, quantum optics in atomic arrays, and SU(N) fermions at the microscopic level. Published by the American Physical Society 2024
Read full abstract