Abstract

Arrays of Rydberg atoms are a powerful platform to realize strongly-interacting quantum many-body systems. A common Rydberg Hamiltonian is free of the sign problem, meaning that its equilibrium properties are amenable to efficient simulation by quantum Monte Carlo (QMC). In this paper, we develop a Stochastic Series Expansion QMC algorithm for Rydberg atoms interacting on arbitrary lattices. We describe a cluster update that allows for the efficient sampling and calculation of physical observables for typical experimental parameters, and show that the algorithm can reproduce experimental results on large Rydberg arrays in one and two dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.