Abstract
We develop a general framework for the analysis of two-sided quantum interfaces, composed of collections of atoms interacting with paraxial light. Accounting for photon-mediated dipole-dipole interactions, our approach is based on the mapping of collective atom-photon interfaces onto a generic one-dimensional model of light scattering, characterized by a reflectivity parameter r0. This entails two key practical advantages: (i) the efficiency of the quantum interface in performing various quantum tasks, such as quantum memory or entanglement generation, is universally given by r0 and is hence reduced to a measurement or classical calculation of a reflectivity; (ii) the efficiency can be greatly enhanced by a properly designed photon mode that spatially matches a collective-dipole eigenmode of the atoms. We demonstrate our approach for realistic cases of finite-size atomic arrays, partially filled arrays, and circular arrays. This provides a unified approach for treating collective light-matter coupling in various platforms, such as optical lattices and optical tweezers. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.