Abstract

Sub-wavelength arrays of atoms exhibit remarkable optical properties, analogous to those of phased array antennas, such as collimated directional emission or nearly perfect reflection of light near the collective resonance frequency. We propose to use a single-sheet sub-wavelength array of atoms as a switchable mirror to achieve a coherent interface between propagating optical photons and microwave photons in a superconducting coplanar waveguide resonator. In the proposed setup, the atomic array is located near the surface of the integrated superconducting chip containing the microwave cavity and optical waveguide. A driving laser couples the excited atomic state to Rydberg states with strong microwave transition. Then the presence or absence of a microwave photon in the superconducting cavity makes the atomic array transparent or reflective to the incoming optical pulses of proper frequency and finite bandwidth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call