Abstract
Quantum transducers between microwave and optical photons are essential for long-distance quantum networks based on superconducting qubits. An optically active self-assembled quantum dot molecule (QDM) is an attractive platform for the implementation of a quantum transducer because an exciton in a QDM can be efficiently coupled to both optical and microwave fields at the single-photon level. Recently, the transduction between microwave and optical photons has been demonstrated with a QDM integrated with a superconducting resonator. In this paper, we present a design of a QD-high impedance resonator device with a low microwave loss and an expected large single-microwave photon coupling strength of 100s of MHz. We integrate self-assembled QDs onto a high-impedance superconducting resonator using a transfer printing technique and demonstrate a low-microwave loss rate of 1.8 MHz and gate tunability of the QDs. The corresponding microwave photon decay time of 88 ns is longer than the time necessary for the optical-microwave transduction process as well as the transmon-resonator swap operation time. This feature will facilitate efficient quantum transduction between an optical and microwave qubit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.