Abstract
Quantum transduction between the microwave and optical domains is an outstanding challenge for long-distance quantum networks based on superconducting qubits. For all transducers realized to date, the generally weak light-matter coupling does not allow high transduction efficiency, large bandwidth, and low noise simultaneously. Here we show that a large electric dipole moment of an exciton in an optically active self-assembled quantum dot molecule (QDM) efficiently couples to a microwave resonator field at a single-photon level. This allows for transduction between microwave and optical photons without coherent optical pump fields to enhance the interaction. With an on-chip device, we demonstrate a sizeable single-photon coupling strength of 16 MHz. Thanks to the fast exciton decay rate in the QDM, the transduction bandwidth between an optical and microwave resonator photon reaches several 100s of MHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.