The effects of hydrogen bonding and spin density at the oxygen atom on the gas-phase reactivity of phenoxyl radicals were investigated experimentally and theoretically in model systems and the dipeptide LysTyr. Gas-phase ion-molecule reactions were carried out between radical cations of several aromatic nitrogen bases with the neutrals nitric oxide and n-propyl thiol. Reactivity of radical cations 4–6 correlated with the spin density. The possibility of hydrogen bonding was explored in compounds which allowed four-, five-, and six-membered rings to be formed between the protonated nitrogen and the phenoxyl oxygen, while possessing similar spin density at the oxygen atom. The N+-H⋯O bond length was calculated to decrease in the series (1–3), consistent with the theoretical calculations finding weak hydrogen bonding in 2 and strong hydrogen bonding in 3. This coincided with the decrease in reaction rates of 1–3 with both nitric oxide and n-propyl thiol. DFT calculations found that the lowest energy structure of the distonic radical cation of the dipeptide [LysTyr(O)]+ has a short hydrogen bond between the protonated Lys side chain and the phenoxyl oxygen, 1.70Å, which is consistent with its low reactivity.
Read full abstract