Abstract

AbstractCertain aromatic diamines (the “proton sponges”) are found to have exceptionally high basicity constants: this is due to spatial interaction of the basic centers, which are in close proximity. The two factors which are most important in causing this effect are, on the one hand, the extreme steric strain in these systems and the destabilizing effect of the overlap of the nitrogen lone pairs of the neutral diamines and, on the other, the strong NċHċN hydrogen bonds which are formed on monoprotonation and which lead to a considerable relaxation of the steric strain. By the systematic variation of the structures of such aromatic diamines we have been able to study these effects as a function of steric factors, in particular of the geometry and the bond length of the NċHċN hydrogen bonds, by means of X‐ray structural analysis. The hydrophobic shielding of the basic centers and the NċHċN hydrogen bonds, which was characteristic of the “proton sponge” compounds studied previously, is indeed responsible for the extremely low rate of protonation and deprotonation of these compounds; however, it apparently has no influence on their high thermodynamic basicity. The recent synthesis and basicity determination of a new type of “proton sponge” with no hydrophobic shielding whatever show that not only very strong but also kinetically active bases are accessible using the “proton sponge” concept. Their unusual properties, which are discussed here as the result of steric interactions between two basic centers, provide examples of the fact that cooperative steric interactions of reactive structural elements can lead to properties which cannot be derived from an isolated consideration of the various functional groups. Such “proximity effects” are certainly of general importance in chemistry and biochemistry; the study of their structure‐function relationships is worthy of closer consideration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.