Magnesium oxide and hydroxide nanomaterials comprise a class of promising advanced functional metal nanomaterials whose use in environmental and material applications is increasing. Several strategies to synthesize these nanomaterials have been described but are unsustainable and uneconomic. This work reports on a processing strategy that turns natural magnesium-rich chrysotile into magnesium oxide and hydroxide nanoparticles via nanoparticle hybridization and an alkaline process while enabling La-based nanoparticles to coat the chrysotile nanotube surfaces. The adsorbent's resulting hybrid nanostructure had an outstanding capacity for phosphate uptake (135.2 mg P g-1) and enhanced regeneration performance. Furthermore, the adsorbent featured wide applicability with respect to the coexistence of competitive anions and a broad range of pH conditions, and its high-performance phosphate removal from sewage effluent was also demonstrated. Spectroscopic and microscopic analyses revealed the scavenging ability of phosphate by the La-based and Mg-based nanoparticles and the multiple capture mechanisms involved, including surface complexation and ion exchange. This proposed approach expands chrysotile's potential use as a magnesium-rich nanomaterial and harbors great promise for the removal of pollutants in a variety of real-world settings.
Read full abstract