Abstract

Herein, we introduce a straightforward, scalable, and technologically relevant strategy to manufacture charged porous polymer membranes (CPMs) in a controllable manner. The pore sizes and porous architectures of CPMs are well-controlled by rational choice of anions in poly(ionic liquid)s (PILs). Continuously, heteroatom-doped hierarchically porous carbon membrane (HCMs) can be readily fabricated via morphology-maintaining carbonization of as-prepared CPMs. These HCMs, as photothermal membranes, exhibited excellent performance for solar seawater desalination, representing a promising strategy to construct advanced functional nanomaterials for portable water production technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.