Materials that provide dynamically tunable infrared (IR) response are important for many applications, including active camouflage and thermal management. However, current IR-tunable systems often exhibit limitations in mechanical properties or practicality of their tuning modalities, or require complex and costly fabrication methods. An additional challenge relates to providing compatibility between different spectral channels, such as allowing an object to be reversibly concealed in the IR without making it appear in the visible range. Here, we demonstrate that conducting polymer-cellulose papers, fabricated through a simple and cheap approach, can overcome such challenges. The papers exhibit IR properties that can be electrochemically tuned with large modulation (absolute emissivity modulation of 0.4) while maintaining largely constant response in the visible range. Owing to high ionic and electrical conductivity, the tuning of the top surface can be performed electrochemically from the other side of the paper even at tens of micrometer thicknesses, removing the need for overlaying electrode and electrolyte in the optical beam path. These features enabled a series of electrically tunable IR devices, where we focus on demonstrating dynamic radiative coolers, thermal camouflage, anti-counterfeiting tags, and grayscale IR displays. The conducting polymer-cellulose papers are sustainable, cheap, flexible and mechanically robust, providing a versatile materials platform for active and adaptive IR optoelectronic devices.