Abstract

Photonic integrated circuits (PICs) based on gallium nitride (GaN) platforms have been widely explored for various applications at C-band (1530 nm∼1565 nm) and visible light wavelength range. However, for O-band (1260 nm∼1360 nm) commonly used in short reach/cost sensitive markets, GaN-based PICs still have not been fully investigated. In this article, a microring resonator with an intrinsic Q-factor of ∼2.67 × 104 and an extinction ratio (ER) of 35.1 dB at 1319.9 nm and 1332.1 nm, is monolithically integrated with a transverse electric-polarized focusing grating coupler and a ridge waveguide on a GaN-on-sapphire platform. This shows a great potential to further exploit the optical properties of GaN materials and integrate GaN-based PICs with the mature GaN active electronic and optoelectronic devices to form a greater platform of optoelectronic-electronic integrated circuits (OEICs) for data-center and telecom applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call