Although solar-driven seawater desalination affords a highly promising strategy for freshwater-electricity harvesting by employing abundant solar energy and ocean resources, the inevitable salt crystallization on the surface of evaporators causes a sharp decline in evaporation performance and the poor electricity output of most coupled inflexible evaporation-power generation devices limits the scalability and durability in long-time practical applications. Herein, we report a simple programmable nanofluidic photothermal textile umbrella by asymmetrically depositing MoS2 nanosheets on cotton textiles, which allows for controllable gravity-assisted edge-preferential salt crystallization/harvesting via self-manipulated saline solution transportation in the wet umbrella and simultaneous drenching-induced electrokinetic voltage generation (0.535 V)/storage (charging a capacitor to 12.2 V) in over 120 h of the nonstop solar desalination process (with 7.5 wt % saline solution). Notably, the morphology and salt crystallization areas can be managed via the programmed umbrellas. Moreover, the asymmetric textile umbrellas possess admirable sewable features for large-scale integration to enhance the evaporation and voltage output efficiency. Importantly, this textile umbrella evaporator shows excellent output stability and durability even after 40 times of washing. This work may pave a scalable way to design programmable solar evaporators for sustainable seawater desalination with scalabilities of zero-waste discharge, valuable resource recovery, and energy harvesting.
Read full abstract