Abstract

European islands are pioneers in the development of renewable energy technologies. Aim of the current research is to investigate the possibility of zeroing the net annual carbon emissions due to electricity generation in the island of Crete, Greece. Crete, with population 634,930 permanent residents, has abundant solar and wind energy resources while electricity generation from solar-PV systems and wind farms is highly profitable. The electric grid of Crete was autonomous so far but currently its interconnection with the grid of continental Greece is under construction. This will allow soon the transfer of large amounts of electricity between Crete and the mainland. When excess electricity will be generated by solar and wind energy systems in the island it could be transferred in mainland and vice-versa. Carbon neutrality due to electricity generation in Crete can be achieved with local generation of “green solar and wind electricity” combined with electricity transfer via two electric cables with the mainland. Annual electricity generation in Crete is currently at 3,043 GWh while 21.22% of it is generated by renewable energies. Carbon emissions due to electricity generation are calculated at 3.22 tnCO2/capita. It has been estimated that the required size of solar-PV systems generating annually the electricity currently produced by fossil fuels in Crete is at 1,698 MWp while their cost is at 2.04 bil. €. The required size of wind farms generating annually the electricity currently produced by fossil fuels is at 950.6 MWel while their cost is at 0.914 bil. €. It is concluded that carbon neutrality due to electricity generation in Crete is technically and economically feasible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call