The work covers the development of a data-driven algorithm and computes the performance of learning models for lithium-ion battery state of health (SOH) estimation. A wide range of environmental and temperature conditions (15 °C, 25 °C, and 35 °C) at different charging and discharging rates of 1C and 2C are used for electric vehicle battery health estimation. The result of the tested data of cell ‘a’ is validated with a different set of cell ‘b’ on identical test parameters, and the results are tabulated and compared. At 25 °C, the mean absolute errors for the regression algorithms decision tree (DT), k-nearest neighbor (KNN), and random forest (RF) are 3.78641E-03, 3.62524E-03, and 6.16931E-03. The mean absolute percent error for regression algorithms DT, KNN, and RF is 1.48921E-03, 1.40631E-03, and 2.40260E-03. The root mean square error for regression algorithms DT, KNN, and RF is 1.26813E-02, 9.73320E-03, and 1.17238E-02, and the mean squared error for regression algorithms DT, KNN, and RF is 1.60816E-04, 9.47351E-05, and 1.37448E-04. The results show that the KNN and DT methods accurately estimate the SOH under diversified operating conditions in comparison with RF methods and can foster advanced battery health monitoring systems.
Read full abstract