Abstract

Electro-thermal annealing (ETA) in a MOSFET utilizes Joule heating. The high-temperature heat effectively cures gate dielectric damages induced by electrical stresses or ionizing radiation. However, even though ETA can be used to improve the reliability of logic and memory devices, applying ETA in state-of-the-art field-effect transistors (FETs) such as nanosheet FETs (NS FETs) has not yet been demonstrated. This paper addresses the heat distribution characteristic of an NS FET considering the application of ETA, using 3D simulations. A vacuum inner spacer is newly proposed to improve annealing effects during ETA. In addition, evaluations of the device scaling and annealing effect were performed with respect to gate length, nanosheet-to-nanosheet vertical space, and inner spacer thickness. Guidelines for ETA in NS FETs can be provided on the basis of the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.