Abstract

A rotary vibration-assisted polishing device (RVAPD) is designed to enhance polishing force by converting PZT’s linear motion into the rotary motion of a central platform via a flexible mechanism, improving material surface quality. The RVAPD is optimized, simulated, and tested to meet high-frequency and large-amplitude non-resonant vibration polishing requirements. Its structure, designed using theoretical models and finite element software, offers a wide range of polishing parameters. Performance parameters are validated through open-loop tests, confirming effectiveness in polishing experiments. The lever mechanism and Hoeckens connection enhance vibration parameters and motion efficiency, reducing surface flaws in SiC and improving uniformity. Adjusting the RVAPD structure and using the proposed method significantly improve SiC surface quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.