Abstract
The greedy triangulation of a finite planar point set is obtained by repeatedly inserting a shortest diagonal that does not cross those already in the plane. The Delaunay triangulation, which is the straight-line dual of the Voronoi diagram, can be produced in O( nlog n) worst-case time, and often even faster, by several practical algorithms. In this paper we show that for any planar point set S, if the Delaunay triangulation of S is given, then the greedy triangulation of S can be computed in linear worst-case time (and linear space).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.