Abstract

In this study, we lay the groundwork for a systematic investigation of the rigidity and flexibility of rigid origami by using the mathematical model referred to as the panel-point model. Rigid origami is commonly known as a type of panel-hinge structure where rigid polygonal panels are connected by rotational hinges, and its motion and stability are often investigated from the perspective of its consistency constraints representing the rigidity and connection conditions of panels. In the proposed methodology, vertex coordinates are directly treated as the variables to represent the rigid origami in the panel-point model, and these variables are constrained by the conditions for the out-of-plane and in-plane rigidity of panels. This model offers several advantages including: 1) the simplicity of polynomial consistency constraints; 2) the ease of incorporating displacement boundary conditions; and 3) the straightforwardness of numerical simulation and visualization. It is anticipated that the presented theories in this article are valuable to a broad audience, including mathematicians, engineers, and architects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call