Abstract
In this study, we lay the groundwork for a systematic investigation of the rigidity and flexibility of rigid origami by using the mathematical model referred to as the panel-point model. Rigid origami is commonly known as a type of panel-hinge structure where rigid polygonal panels are connected by rotational hinges, and its motion and stability are often investigated from the perspective of its consistency constraints representing the rigidity and connection conditions of panels. In the proposed methodology, vertex coordinates are directly treated as the variables to represent the rigid origami in the panel-point model, and these variables are constrained by the conditions for the out-of-plane and in-plane rigidity of panels. This model offers several advantages including: 1) the simplicity of polynomial consistency constraints; 2) the ease of incorporating displacement boundary conditions; and 3) the straightforwardness of numerical simulation and visualization. It is anticipated that the presented theories in this article are valuable to a broad audience, including mathematicians, engineers, and architects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.