Abstract
Tessellations are an important tool to model the microstructure of cellular and polycrystalline materials. Classical tessellation models include the Voronoi diagram and the Laguerre tessellation whose cells are polyhedra. Due to the convexity of their cells, those models may be too restrictive to describe data that includes possibly anisotropic grains with curved boundaries. Several generalizations exist. The cells of the generalized balanced power diagram are induced by elliptic distances leading to more diverse structures. So far, methods for computing the generalized balanced power diagram are restricted to discretized versions in the form of label images. In this work, we derive an analytic representation of the vertices and edges of the generalized balanced power diagram in 2d. Based on that, we propose a novel algorithm to compute the whole diagram.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.