Abstract
Given a set of n colored points with k colors in the plane, we study the problem of computing a maximum-width rainbow-bisecting empty annulus (of objects specifically axis-parallel square, axis-parallel rectangle and circle) problem. We call a region rainbow if it contains at least one point of each color. The maximum-width rainbow-bisecting empty annulus problem asks to find an annulus A of a particular shape with maximum possible width such that A does not contain any input points and it bisects the input point set into two parts, each of which is a rainbow. We compute a maximum-width rainbow-bisecting empty axis-parallel square, axis-parallel rectangular and circular annulus in O(n3) time using O(n) space, in O(k2n2logn) time using O(nlogn) space and in O(n3) time using O(n2) space respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.