Abstract

We show that Delaunay triangulations and compressed quadtrees are equivalent structures. More precisely, we give two algorithms: the first computes a compressed quadtree for a planar point set, given the Delaunay triangulation; the second finds the Delaunay triangulation, given a compressed quadtree. Both algorithms run in deterministic linear time on a pointer machine. Our work builds on and extends previous results by Krznaric and Levcopolous and Buchin and Mulzer. Our main tool for the second algorithm is the well-separated pair decomposition (WSPD), a structure that has been used previously to find Euclidean minimum spanning trees in higher dimensions. We show that knowing the WSPD (and a quadtree) suffices to compute a planar Euclidean minimum spanning tree (EMST) in linear time. With the EMST at hand, we can find the Delaunay triangulation in linear time. As a corollary, we obtain deterministic versions of many previous algorithms related to Delaunay triangulations, such as splitting planar Delaunay triangulations, preprocessing imprecise points for faster Delaunay computation, and transdichotomous Delaunay triangulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call