Abstract

A gallium nitride (GaN) based Metal-Oxide-Semiconductor (MOS) capacitor was fabricated using radio frequency (RF)-sputtered tantalum oxide (Ta2O5) as the high-k gate dielectric. Electrical characteristics of this capacitor were evaluated via capacitance–voltage (C–V), current–voltage (I–V), and interface trap density (Dit) measurements with emphasis on the substrate temperature dependence ranging from 25 °C to 200 °C. Charge trapping and conduction mechanism in Ta2O5 were investigated. The experimental results suggested that higher substrate temperature rendered higher oxide capacitance, reduced gate leakage current, and lowered mid-gap interface trap density at the expenses of high border traps and high fixed oxide charges. The gate leakage current through Ta2O5 was found to obey the Ohm's conduction at lower gate bias and the Poole–Frenkel conduction at higher gate bias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.