Abstract

The increased number of complex functional units exerts high power-density within a very-large-scale integration (VLSI) chip which results in overheating. Power-densities directly converge into temperature which reduces the yield of the circuit. An adverse effect of power-density reduction is the increase in area. So, there is a trade-off between area and power-density. In this paper, we introduce a Shared Reed-Muller Decision Diagram (SRMDD) based on fixed polarity AND-XOR decomposition to represent multioutput Boolean functions. By recursively applying transformations and reductions, we obtained a compact SRMDD. A heuristic based on Genetic Algorithm (GA) increases the sharing of product terms by judicious choice of polarity of input variables in SRMDD expansion and a suitable area and power-density trade-off has been enumerated. This is the first effort ever to incorporate the power-density as a measure of temperature estimation in AND-XOR expansion process. The results of logic synthesis are incorporated with physical design in CADENCE digital synthesis tool to obtain the floor-plan silicon area and power profile. The proposed thermal-aware synthesis has been validated by obtaining absolute temperature of the synthesized circuits using HotSpot tool. We have experimented with 29 benchmark circuits. The minimized AND-XOR circuit realization shows average savings up to 15.23% improvement in silicon area and up to 17.02% improvement in temperature over the sum-of-product (SOP) based logic minimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call