Abstract

Automatically labeling and segmenting vertebrae in 3D CT images compose a complex multi-task problem. Current methods progressively conduct vertebra labeling and semantic segmentation, which typically include two separate models and may ignore feature interaction among different tasks. Although instance segmentation approaches with multi-channel prediction have been proposed to alleviate such issues, their utilization of semantic information remains insufficient. Additionally, another challenge for an accurate model is how to effectively distinguish similar adjacent vertebrae and model their sequential attribute. In this paper, we propose a Semantics and Instance Interactive Learning (SIIL) paradigm for synchronous labeling and segmentation of vertebrae in CT images. SIIL models semantic feature learning and instance feature learning, in which the former extracts spinal semantics and the latter distinguishes vertebral instances. Interactive learning involves semantic features to improve the separability of vertebral instances and instance features to help learn position and contour information, during which a Morphological Instance Localization Learning (MILL) module is introduced to align semantic and instance features and facilitate their interaction. Furthermore, an Ordinal Contrastive Prototype Learning (OCPL) module is devised to differentiate adjacent vertebrae with high similarity (via cross-image contrastive learning), and simultaneously model their sequential attribute (via a temporal unit). Extensive experiments on several datasets demonstrate that our method significantly outperforms other approaches in labeling and segmenting vertebrae. Our code is available at https://github.com/YuZhang-SMU/Vertebrae-Labeling-Segmentation

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.