Abstract

Background and ObjectiveWe investigated a novel method using a 2D convolutional neural network (CNN) to identify superior and inferior vertebrae in a single slice of CT images, and a post-processing for 3D segmentation and separation of cervical vertebrae. MethodsThe cervical spines of patients (N == 17, 1684 slices) from Severance and Gangnam Severance Hospitals (S/GSH) and healthy controls (N == 24, 3490 slices) from Seoul National University Bundang Hospital (SNUBH) were scanned by using various volumetric CT protocols. To prepare gold standard masks of cervical spine in CT images, each spine was segmented by using conventional image-processing methods and manually corrected by an expert. The gold standard masks were preprocessed and labeled into superior and inferior cervical vertebrae separately in the axial slices. The 2D U-Net model was trained by using the disease dataset (S/GSH) and additional validation was performed by using the healthy control dataset (SNUBH), and then the training and validation were repeated by switching the two datasets. ResultsIn case of the model was trained with the disease dataset (S/GSH) and validated with the healthy control (SNUBH), the mean and standard deviation (SD) of the Dice similarity coefficient (DSC), Jaccard similarity coefficient (JSC), mean surface distance (MSD), and Hausdorff surface distance (HSD) were 94.37%% ± 1.45%, 89.47%% ± 2.55%, 0.33 ± 0.12 mm and 20.89 ± 3.98 mm, and 88.67%% ± 5.82%, 80.83%% ± 8.09%, 1.05 ± 0.63 mm and 29.17 ± 19.74 mm, respectively. In case of the model was trained with the healthy control (SNUBH) and validated with the disease dataset (S/GSH), the mean and SD of DSC, JSC, MSD, and HSD were 96.23%% ± 1.55%, 92.95%% ± 2.58%, 0.39 ± 0.20 mm and 16.23 ± 6.72 mm, and 93.15%% ± 3.09%, 87.54%% ± 5.11%, 0.38 ± 0.17 mm and 20.85 ± 7.11 mm, respectively. ConclusionsThe results demonstrated that our fully automated method achieved comparable accuracies with inter- and intra-observer variabilities of manual segmentation by human experts, which is time consuming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.