Abstract

Transforaminal endoscopic surgery (TES) is effective for treatment of intervertebral disc-related diseases. To avoid injury to the critical structures, preoperative planning is required to find a safe working channel. Therefore, accurate patient-specific vertebral segmentation is important. The purpose of this work is to develop a convenient, stable and feasible lumbar vertebrae segmentation method for TES planning. Based on the chain structure of the spine, an interactive dual-output vertebrae instance segmentation network was designed to segment the specific vertebrae in CT images. First, an initialization locator module was set up to provide an initial locating box. Then the dual-output network was designed to segment two adjacent vertebrae inside the locating box. Finally, iteration was performed until all the expected vertebrae were segmented. Verification on reconstructed public dataset showed that the vertebral segmentation Dice coefficient was 96.8 ± 1.2% and average surface distance (ASD) was 0.25 ± 0.10mm. For intervertebral foramen (IVF) region, the Dice coefficient was 96.1 ± 1.5% and ASD was 0.29 ± 0.10mm. For IVF forming region, the Dice coefficient was 93.4 ± 3.1% and ASD was 0.28 ± 0.13mm. The evaluation on private dataset showed that more than 90% of the segmentation were suitable for TES planning. For IVF region, the Dice coefficient was 94.4 ± 1.8% and ASD was 0.71 ± 0.49mm. This work provides a convenient, stable and feasible segmentation method for lumbar vertebrae, IVF region, and IVF forming region. The segmentation can meet the requirement for TES planning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.