Abstract

Labeling and segmentation of the spinal column from CT images is a pre-processing step for a range of image- guided interventions. State-of-the art techniques have focused either on image feature extraction or template matching for labeling of the vertebrae followed by segmentation of each vertebra. Recently, statistical multi- object models have been introduced to extract common statistical characteristics among several anatomies. In particular, we have created models for segmentation of the lumbar spine which are robust, accurate, and computationally tractable. In this paper, we reconstruct a statistical multi-vertebrae pose+shape model and utilize it in a novel framework for labeling and segmentation of the vertebra in a CT image. We validate our technique in terms of accuracy of the labeling and segmentation of CT images acquired from 56 subjects. The method correctly labels all vertebrae in 70% of patients and is only one level off for the remaining 30%. The mean distance error achieved for the segmentation is 2.1 +/- 0.7 mm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.