Abstract

Pointed pseudo-triangulations are planar minimally rigid graphs embedded in the plane with pointed vertices (adjacent to an angle larger than π). In this paper we prove that the opposite statement is also true, namely that planar minimally rigid graphs always admit pointed embeddings, even under certain natural topological and combinatorial constraints. The proofs yield efficient embedding algorithms. They also provide the first algorithmically effective result on graph embeddings with oriented matroid constraints other than convexity of faces. These constraints are described by combinatorial pseudo-triangulations, first defined and studied in this paper. Also of interest are our two proof techniques, one based on Henneberg inductive constructions from combinatorial rigidity theory, the other on a generalization of Tutte's barycentric embeddings to directed graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.