Abstract

We address in this paper the problem of constructing embeddings of planar graphs satisfying declarative, user-dened topological constraints. The constraints consist each of a cycle of the given graph and a set of its edges to be embedded inside this cycle and a set of its edges to be embedded outside this cycle. Their practical importance in graph visualization applications is due to the capability of supporting the semantics of graphs. Additionally, embedding algorithms for planar graphs with topological constraints can be combined with planar graph drawing algorithms that transform a given embedding into a topology preserving drawing according to particular drawing conventions and aesthetic criteria. We obtain the following main results on the planarity problem with topological constraints. Since it turns out to be NP-complete, we develop a polynomial time algorithm for reducing the problem for arbitrary planar graphs to a planarity problem with constraints for biconnected graphs. This allows focussing on biconnected graphs when searching for heuristics or polynomial time subproblems. We then dene a particular subproblem by restricting the maximum number of vertices that any two distinct cycles involved in the constraints can have in common. Whereas the problem remains NP-complete if this number exceeds 1, it can otherwise be solved in polynomial time. The embedding algorithm we develop for this purpose is based on the reduction method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.