Abstract

Development of meso and micro size fractal structures is required to mimic various biological systems for various functions. Meso and micro size fractal structures are fabricated by several processes in Engineering. A number of fluid flows are exhaustively analyzed and investigated in the direction of development of meso and micro fractal structures. Hele-Shaw flow is one of the flows which fabricated meso and micro structure. Formation of fractals in Hele-Shaw cell can be done by compressing fluid in two flat parallel plates and lifting of upper plate in the upward direction. Lifting velocity of the upper plate, a gap between the plates, and fluid properties viz. density, viscosity are the major parameters in the formation of fractal. This paper presents the characterization of the fluid, study and analysis of microfractals followed by a mathematical model. The characterization of the fluid consists of photopolymer seeded with the nanopowder in the lifting plate of Hele-Shaw. The resin is prepared by mixing photoinitiator Benzoyl Ethyl Ether (BEE), Hexanediol Diacrylate (HDDA) added with ceramic nanopowder. Through the design of the experiment, micro fractal growth is observed and analysed. The fractals growth controlling parameters viz. gap between plates, velocity causes fluid separation are varied through the experimental setup. Effect of variation in viscosity set by varying loading fraction of seeded ceramic nanoparticles in a resin is observed for formation of fractals. Effect of process parameters on formation and growth of fractals is studied and presented. A dimensionless model of fractal growth is presented to analyse the effect of various parameters. Experimental methodology introduced a new style for the formation of controlled fractals or to imitate different meso and micro fractals available in nature or living things.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.