Abstract

The Saffman-Taylor problem addresses the morphological instability of an interface separating two immiscible, viscous fluids when they move in a narrow gap between two flat parallel plates (Hele-Shaw cell). In this work, we extend the classic Saffman-Taylor situation, by considering the flow between two curved, closely spaced, concentric spheres (spherical Hele-Shaw cell). We derive the mode-coupling differential equation for the interface perturbation amplitudes and study both linear and nonlinear flow regimes. The effect of the spherical cell (positive) spatial curvature on the shape of the interfacial patterns is investigated. We show that stability properties of the fluid-fluid interface are sensitive to the curvature of the surface. In particular, it is found that positive spatial curvature inhibits finger tip-splitting. Hele-Shaw flow on weakly negative, curved surfaces is briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call