Abstract
In the last decade, nano-structured materials have gained a significant interest for applications in solar cells and other optical and opto-electronic devices. Due to carrier confinement, the absorption characteristics in these structures are quite different from the absorption in bulk materials and thin films. Optical absorption coefficients of a silicon nano-wire are obtained based on a semi-classical model where the photon-electron interaction is described by the interaction of an electromagnetic wave with the electrons in the valence band of a semiconductor. The absorption characteristics showed enhanced optical absorption but no resonant peaks. In our modified model, we have identified optically active inter band transitions by performing electronic structure calculations on unit cells of nano-dimensions. The absorption spectrum obtained here shows explicit excitonic processes. This absorption is tunable from the visible region to near UV portion of the solar spectrum. In our previous work on thin films (100 nm) of ITO, we have used classical Drude model to describe free electron absorption. Using the imaginary part of the calculated complex dielectric function, we have plotted the absorption coefficient versus wavelength of the photon and compared with the experimental data showing good agreement between theory and experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.