Abstract

In a III-nitride multiple quantum well (MQW) diode biased with a forward voltage, electrons recombine with holes inside the MQW region to emit light; meanwhile, the MQW diode utilizes the photoelectric effect to sense light when higher-energy photons hit the device to displace electrons in the diode. Both the injected electrons and the liberated electrons are gathered inside the diode, thereby giving rise to a simultaneous emission-detection phenomenon. The 4 × 4 MQW diodes could translate optical signals into electrical ones for image construction in the wavelength range from 320 to 440 nm. This technology will change the role of MQW diode-based displays since it can simultaneously transmit and receive optical signals, which is of crucial importance to the accelerating trend of multifunctional, intelligent displays using MQW diode technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call