Abstract
Compared with the direct modulation technology used in traditional visible light communication, the indirect modulation method can share a single light source in multiple channels, which features reduced system size and power consumption. In this paper, a near ultraviolet light modulator with InGaN/AlGaN multiple quantum well (MQW) structure is proposed based on GaN-on-silicon light-emitting diode (LED) wafer. Because the MQW diode structure is consistent with the light source and the photodetector (PD), the modulator can be monolithically integrated with the light source, PD, waveguide and other devices through compatible manufacturing processes. The MQW of the wafer is sandwiched by the waveguide layers and the light emitted by the light source is confined in the waveguide for transmission. The extinction ratio can be adjusted by changing the modulation voltage and the incident signal is loaded onto the optical carrier through the modulator. The optical signal is received by the MQW PD near the end of the waveguide and converted into electrical signal. The results show that the modulator has a significant modulation effect with the extinction ratio greater than 24.4 % and has important application prospects in light processing and transmission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.