Abstract

The microbial enhanced oil recovery (MEOR) process has been identified as a promising alternative to conventional enhanced oil recovery methods because it is eco-friendly and economically advantageous. However, the knowledge about the composition and diversity of microbial communities in artificially regulated reservoirs, especially after activating petroleum hydrocarbon-degrading bacteria (PHDB) by injecting exogenous nutrients, is still insufficient. This study utilized a combination of high-throughput sequencing and metagenomics technology to reveal the structural evolution characteristics of the indigenous microbial community in the reservoir during the PHDB activated for enhanced oil recovery, as well as the response relationship between the expression of its oil production functional genes and crude oil biodegradation. Results showed that Pseudomonas (>75%) gradually evolves into a stable dominant microbial community in the reservoir during the activation of PHDB. Besides, the gene expression and KEGG pathways after crude oil undergoes biodegradation by PHDB show that the number of genes related to petroleum hydrocarbon metabolism dominates the metabolism (21.98%). Meanwhile, a preliminary schematic diagram was drawn to illustrate the evolution mechanism of the EOR metabolic pathway after the targeted activation of PHDB. Additionally, it was found that the abundance of hydrocarbon-degrading enzymes increased significantly, and the activity of alcohol dehydrogenase was higher than that of aldehyde dehydrogenase and monooxygenase after PHDB activation. These research results not only filled in and expanded the theoretical knowledge of MEOR based on artificial interference or regulation of reservoir oil-recovery functional microbial community structure but also provided guidance for the future application of MEOR technology in oil field operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.