Abstract

We present a systematic simulation and experimental study of tunneling leakage current of the interpoly dielectric (IPD) layer in a floating gate (FG) type flash memory. IPD layers with different structural and material combinations such as HfLaO and 4% Tb-doped HfO 2 were studied. It is shown that compared with a conventional Al 2O 3–HfO 2–Al 2O 3 high–low–high barrier structure, the HfO 2–Al 2O 3–HfO 2 multilayer IPD stack with a low–high–low barrier structure has a lower leakage current due to the longer effective electron tunneling distance. Results also show that multilayer IPD structure has advantage of better thermal stability compared to the single layer IPD. Further work with simulations and experiments results suggest that the presence of a thin interfacial layer between polysilicon FG and IPD can increase the magnitude of leakage current by two or three orders. Nitridation of polysilicon floating gate reduced the leakage current by around two orders of magnitude at a constant equivalent oxide thickness. This is due to the elimination of the interfacial layer between polysilicon and high- κ IPD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.