Abstract
Heat transfer, a mere process of exchange of heat due to a temperature gradient, plays a vital role in industries and domestic applications. Among all the heat exchangers, Shell and Tube Exchanger are used predominantly due to their compact and robust design. For a given design to increase the heat transfer characteristics needs a research investigation. Among all augmentation techniques, a passive method found widely used as it avoids mechanical modification of the existing heat exchanger and addresses only on flow geometry. Twisted tape inserts are extensively used to change the flow geometry of fluid on the tube side. The present research work intended on utilising twisted tape, twisted tape with baffles and hiTrain wire matrix inserts. Experimental investigation reveals that inserts efficiently disturb the tube side fluid flow, in turn, increases pressure drop which increases the fluid wall shear and hence enhances the substantial increase in tube side heat transfer rate. At lower Reynolds number twisted tape with baffles has comparatively higher heat transfer coefficient, and at higher Reynolds, number hiTrain wire has comparatively higher heat transfer coefficient. Friction factor decreases linearly from twisted tape with baffles to hiTrain wire matrix as Reynolds number increases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have