Abstract

In this paper, Age, Gender, Body Mass Index, HDL, LDL, Triglyceride, Uric Acid and The Use of Smoking data gathered from 150 patients are analyzed with data mining classification algorithms. The data is divided into two different classes which are normal and patient. Thus, a diagnostic system is developed which predicts whether a candidate patient has hypertension or not. Besides, a decision tree is created and factors affecting hypertension directly and indirectly are determined. In this study, C4.5, Naive Bayes and Multilayer perceptron classification algorithms are used, and shown that C4.5 algorithm gives better results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.