Abstract

To meet the growing demands of on-board applications such as cooling meteorological payloads and the satellite operational constraints like power, lower mass, reduced size and redundancy; a Pulse Tube Cryocooler (PTC) is designed by arriving at an operating frequency of 100 Hz and Helium gas pressure of 35 bar based on insights obtained from combination of phasor diagram, pulse tube and regenerator geometries with overall system mass of ≤ 2.0 kg. High frequency operation would allow reducing the size and mass of pressure wave modulator for a given input power. High Frequency also helps in reducing the volume of regenerator for a given cooling power, which increases the power density and leads to faster cool down. A component level modelling of the regenerator for optimising length and diameter for maximum Coefficient of Performance (COP) is carried out using REGEN3.3. The overall system level modelling of PTC is carried out using 1-D software SAGE. The cold end mass flow rate of the optimised regenerator is taken as reference for the system modelling. The performance achieved in REGEN3.3 is 2.15 W of net heat lift against the performance of 1.02 W of net heat lift at 80 K in SAGE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call