Abstract

The efficiency of 4 K Stirling type pulse tube cryocoolers (SPTCs) is rather low due to significant regenerator losses associated with the unique properties of helium around 4 K and the high operating frequencies. In this paper, regenerator performance at liquid helium temperature regions under high frequencies is investigated based on a single-stage SPTC precooled by a two-stage Gifford-McMahon type pulse tube cryocooler (GMPTC). The 4 K SPTC used a 10 K cold inertance tube as phase shifters for better phase relationship between pressure and mass flow. The effect of the operating parameters, including frequency and average pressure on the performance of the 4 K SPTC, was investigated and the first and second precooling powers provided by the GMPTC were obtained. To reduce the regenerator heat transfer losses, a multi-layer regenerator matrix, including Gd2O2S (GOS) and HoCu2, was used instead of a single-layer HoCu2 around 4 K. A theoretical and experimental comparison between the two types of regenerator materials was made and the precooling requirements for a regenerator operating at high frequencies to reach liquid helium temperatures were given, which provided guidance for the design of a three-stage SPTC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call