Abstract
We present a comprehensive approach of designing on-chip inductors using a CMOS-compatible technology on a porous silicon substrate. On-chip inductors realized on standard CMOS technology on bulk silicon suffer from mediocre Q-factor values partly because of the loss created by the Si substrate at higher frequencies, in addition to the metal losses. We examine the alternative of using porous Si as a thick layer isolating the Si substrate from the metallization in an otherwise standard CMOS technology. We present theoretical designs produced with full-wave Method-of-Moments simulations, verified by measurements in standard 0.18μm CMOS technology using Al metallization. When porous Si is introduced in that technology, the same inductor metallization produced Q-factor enhancements of the order of 50%, compared to the same inductor on bulk crystalline silicon. We also produce optimized single-ended inductor designs using Cu on porous Si, in a 0.13μm-compatible CMOS technology. The resulting Q-factors are enhanced by a factor of 2 and reach values of 30 or more in the 2–3GHz frequency range. Even higher quality factors can be obtained in this technology when differential designs are used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.