Abstract
Nowadays, the proliferation of distributed renewable energy sources is a fact. A microgrid is a good solution to self-manage the energy generation and consumption of electrical loads and sources from the point of view of the consumer as well as the power system operator. To make a microgrid as versatile as necessary to carry that out, a flexible inverter is necessary. In this paper, an algorithm is presented to control an inverter and make it complete and versatile to work in grid-connected and in isolated modes, injecting or receiving power from the grid and always compensating the harmonics generated by the loads in the microgrid. With this inverter, the microgrid can work while optimizing its energy consumption or according to the power system operator instructions. The inverter proposed is tested in a designed Matlab/Simulink simulation platform. After that, an experimental platform designed and built ad hoc, including a DC source, AC linear and non-linear loads, and a Semikron power inverter, is used to test the proposed control strategies. The results corroborate the good system performance. The replicability of the system is guaranteed by the use of low-cost devices in the implementation of the control.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have