Abstract

A novel nine transistor (9T) CMOS SRAM cell design at 32 nm feature size is presented to improve the stability, power dissipation, and delay of the conventional SRAM cell along with detailed comparisons with other designs. An optimal transistor sizing is established for the proposed 9T SRAM cell by considering stability, energy consumption, and write-ability. As a complementary hardware solution at array-level, a novel write bitline balancing technique is proposed to reduce the leakage current. By optimizing its size and employing the proposed write circuit technique, 33% power dissipation saving is achieved in memory array operation compared with the conventional 6T SRAM based design. A new metric that comprehensively captures all of these figures of merit (and denoted to as SPR) is also proposed; under this metric, the proposed 9T SRAM cell is shown to be superior to all other cell configurations found in the technical literatures. The impact of the process variations on the cell design is investigated in detail. HSPICE simulation shows that the 9T SRAM cell demonstrates an excellent tolerance to process variations comparing with the conventional SRAM cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.