Abstract
In this paper, we benchmark two automation frameworks, Vitis AI and FINN, for sign language recognition on a Field Programmable Gate Array (FPGA). We conducted an in-depth exploration of both frameworks using Tiny YOLOv2 networks by varying design parameters such as precision, parallelism ratio, etc. Further, a fair baseline comparison is made based on accuracy, speed, and hardware resources. Experimental findings demonstrate that the Vitis AI outperforms the FINN framework and traditional GPU and CPU platforms by achieving significant improvements of 1.08x, 1.7x, and 2.9x in terms of latency. Leveraging Vitis AI, our system achieved a detection speed of 32.7 frames per second (FPS) on the Kria KV260 FPGA with a power consumption rate of 5.6 W and an impressive mean Average Precision (mAP) score of 61.2% on the Hindi Indian Sign Language (ISL) dataset.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have